SSQI

Coal Emission 11

Courtesy : Coal Emission

Mercury emissions

In 2011 U.S. power plants emitted half of the nation’s mercury air pollutants. In February 2012, EPA issued the Mercury and Air Toxics Standards (MATS) regulation, which requires all coal-fired plants to substantially reduce mercury emissions.

In New York State winds deposit mercury from the coal-fired power plants of the Midwest, contaminating the waters of the Catskill Mountains. Mercury is concentrated up the food chain, as it is converted into methylmercury, a toxic compound which harms both wildlife and people who consume freshwater fish.The mercury is consumed by worms, which are eaten by fish, which are eaten by birds (including bald eagles). As of 2008, mercury levels in bald eagles in the Catskills had reached new heights.”People are exposed to methylmercury almost entirely by eating contaminated fish and wildlife that are at the top of aquatic food chains.” Ocean fish account for the majority of human exposure to methylmercury; the full range of sources of methylmercury in ocean fish is not well understood.# ISO certification in India

Annual excess mortality and morbidity

In 2008 the World Health Organization (WHO) and other organizations calculated that coal particulates pollution cause approximately one million deaths annually across the world, which is approximately one third of all premature deaths related to all air pollution sources, for example in Istanbul by lung diseases and cancer.

Pollutants emitted by burning coal include fine particulates (PM2.5) and ground level ozone. Every year, the burning of coal without the use of available pollution control technology causes thousands of preventable deaths in the United States. A study commissioned by the Maryland nurses association in 2006 found that emissions from just six of Maryland’s coal-burning plants caused 700 deaths per year nationwide, including 100 in Maryland. Since installation of pollution abatement equipment on one of these six, the Brandon Shores plant, now “produces 90 percent less nitrogen oxide, an ingredient of smog; 95 percent less sulfur, which causes acid rain; and vastly lower fractions of other pollutants.”.# ISO certification in India

Economic costs

A 2001 EU-funded study known as ExternE, or Externalities of Energy, over the decade from 1995 to 2005 found that the cost of producing electricity from coal would double over its present value, if external costs were taken into account. These external costs include damage to the environment and to human health from airborne particulate matter, nitrogen oxides, chromium VI and arsenic emissions produced by coal. It was estimated that external, downstream, fossil fuel costs amount up to 1–2% of the EU’s entire Gross Domestic Product (GDP), with coal being the main fossil fuel accountable, and this was before the external cost of global warming from these sources was even included.The study found that environmental and health costs of coal alone were €60/MWh, with the energy sources of the lowest external costs being nuclear power €1.9/MWh, and wind power at €0.90/MWh..# ISO certification in India

High rates of motherboard failures in China and India appear to be due to “sulfurous air pollution produced by coal that’s burned to generate electricity. It corrodes the copper circuitry,” according to Intel researchers.

Greenhouse gas emissions

See also: Environmental impact of the energy industry and Attribution of recent climate change

Emissions of CO2 have been caused by different sources ramping up one after the other (Global Carbon Project).

The combustion of coal is the largest contributor to the human-made increase of CO2 in the atmosphere. Electric generation using coal burning produces approximately twice the greenhouse gasses per kilowatt compared to generation using natural gas.

Coal mining releases methane, a potent greenhouse gas. Methane is the naturally occurring product of the decay of organic matter as coal deposits are formed with increasing depths of burial, rising temperatures, and rising pressure over geological time. A portion of the methane produced is absorbed by the coal and later released from the coal seam (and surrounding disturbed strata) during the mining process. Methane accounts for 10.5 percent of greenhouse-gas emissions created through human activity. According to the Intergovernmental Panel on Climate Change, methane has a global warming potential 21 times greater than that of carbon dioxide over a 100-year timeline. The process of mining can release pockets of methane. These gases may pose a threat to coal miners, as well as a source of air pollution. This is due to the relaxation of pressure and fracturing of the strata during mining activity, which gives rise to safety concerns for the coal miners if not managed properly. The buildup of pressure in the strata can lead to explosions during (or after) the mining process if prevention methods, such as “methane draining”, are not taken. .# ISO certification in India

In 2008 James E. Hansen and Pushker Kharecha published a peer-reviewed scientific study analyzing the effect of a coal phase-out on atmospheric CO2 levels. Their baseline mitigation scenario was a phaseout of global coal emissions by 2050. Under the Business as Usual scenario, atmospheric CO2 peaks at 563 parts per million (ppm) in the year 2100. Under the four coal phase-out scenarios, atmospheric CO2 peaks at 422–446 ppm between 2045 and 2060 and declines thereafter. .# ISO certification in India

Exit mobile version