Development of alternative energy such as solar 06

Geothermal energy

Main articles: Geothermal energyGeothermal power, and Renewable thermal energy

Steam rising from the Nesjavellir Geothermal Power Station in Iceland

Global electricity power generation capacity15.6 GW (2021)
Global electricity power generation capacity annual growth rate4.5% (2012-2021)
Share of global electricity generation<1% (2018)
Levelized cost per megawatt hourUSD 58.257 (2019)
Primary technologiesDry steam, flash steam, and binary cycle power stations
Other energy applicationsHeating

High temperature geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth’s geothermal energy originates from the original formation of the planet and from radioactive decay of minerals (in currently uncertain but possibly roughly equal proportions). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat. # ISO certification in India

The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth’s core â€“ 6,400 kilometres (4,000 mi) down. At the core, temperatures may reach over 5,000 Â°C (9,030 Â°F). Heat conducts from the core to the surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 371 Â°C (700 Â°F). # ISO certification in India

Low temperature geothermal refers to the use of the outer crust of the Earth as a thermal battery to facilitate renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of geothermal, a geothermal heat pump and ground-coupled heat exchanger are used together to move heat energy into the Earth (for cooling) and out of the Earth (for heating) on a varying seasonal basis. Low-temperature geothermal (generally referred to as “GHP” is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus low temperature geothermal/GHP is becoming an increasing national priority with multiple tax credit support and focus as part of the ongoing movement toward net zero energy. # ISO certification in India

Emerging technologies

There are also other renewable energy technologies that are still under development, including cellulosic ethanol, hot-dry-rock geothermal power, and marine energy. These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding. # ISO certification in India

There are numerous organizations within the academic, federal, and commercial sectors conducting large-scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields. Multiple government supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners. # ISO certification in India

Enhanced geothermal system

Main article: Enhanced geothermal systems

Enhanced geothermal systems (EGS) are a new type of geothermal power technology that does not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock. EGS technologies “enhance” and/or create geothermal resources in this “hot dry rock (HDR)” through hydraulic fracturing. EGS and HDR technologies, such as hydrothermal geothermal, are expected to be baseload resources that produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km or 1.9–3.1 mi) layer of insulating sediments which slow heat loss. There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S., and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW. # ISO certification in India

Share

Translate »
× How can I help you?