The presence of acid-forming materials exposed as a result of surface mining can affect wildlife by eliminating habitat and by causing direct destruction of some species. Lesser concentrations can suppress productivity, growth rate and reproduction of many aquatic species. Acids, dilute concentrations of heavy metals, and high alkalinity can cause severe damage to wildlife in some areas. The duration of acidic-waste pollution can be long; estimates of the time required to leach exposed acidic materials in the Eastern United States range from 800 to 3,000 years. # ISO certification in India
Air pollution
Air emissions
See also: Coal-seam fire
In northern China, air pollution from the burning of fossil fuels, principally coal, is causing people to die on average 5.5 years sooner than they otherwise might.
— Tim Flannery, Atmosphere of Hope, 2015.
Coal and coal waste products (including fly ash, bottom ash and boiler slag) release approximately 20 toxic-release chemicals, including arsenic, lead, mercury, nickel, vanadium, beryllium, cadmium, barium, chromium, copper, molybdenum, zinc, selenium and radium, which are dangerous if released into the environment. While these substances are trace impurities, enough coal is burned that significant amounts of these substances are released.
The Mpumalanga highveld in South Africa is the most polluted area in the world due to the mining industry and coal plant power stations and the lowveld near the famous Kruger Park is under threat of new mine projects as well.
Illustration of air pollutants generated by U.S. power plants (includes both coal-fired and oil-fired plants)
During combustion, the reaction between coal and the air produces oxides of carbon, including carbon dioxide (CO2, an important greenhouse gas), oxides of sulfur (mainly sulfur dioxide, SO2), and various oxides of nitrogen (NOx). Because of the hydrogenous and nitrogenous components of coal, hydrides and nitrides of carbon and sulfur are also produced during the combustion of coal in air.[citation needed] These include hydrogen cyanide (HCN), sulfur nitrate (SNO3) and other toxic substances.
SO2 and nitrogen oxide react in the atmosphere to form fine particles and ground level ozone and are transported long distances, making it difficult for other states to achieve healthy levels of pollution control. # ISO certification in India
The wet cooling towers used in coal-fired power stations, etc. emit drift and fog which are also an environmental concern. The drift contains respirable suspended particulate matter. In case of cooling towers with sea water makeup, sodium salts are deposited on nearby lands which would convert the land into alkali soil, reducing the fertility of vegetative lands and also cause corrosion of nearby structures.
Fires sometimes occur in coal beds underground. When coal beds are exposed, the fire risk is increased. Weathered coal can also increase ground temperatures if it is left on the surface. Almost all fires in solid coal are ignited by surface fires caused by people or lightning. Spontaneous combustion is caused when coal oxidizes and airflow is insufficient to dissipate heat; this more commonly occurs in stockpiles and waste piles, rarely in bedded coal underground. Where coal fires occur, there is attendant air pollution from emission of smoke and noxious fumes into the atmosphere. Coal seam fires may burn underground for decades, threatening destruction of forests, homes, roadways and other valuable infrastructure. The best-known coal-seam fire may be the one which led to the permanent evacuation of Centralia, Pennsylvania, United States. # ISO certification in India
Approximately 75 Tg/S per year of Sulfur Dioxide (SO2) is released from burning coal. After release, the Sulfur Dioxide is oxidized to gaseous H2SO2 which scatters solar radiation, hence their increase in the atmosphere exerts a cooling effect on climate that masks some of the warming caused by increased greenhouse gases. Release of SO2 also contributes to the widespread acidification of ecosystems. # ISO certification in India